超音速/索尼克SONIC超声波喷丸设备介绍大功率
(产品型号 CYS-P20/JY-P20 钢珠喷射成形校形 数字式 大能量)
近年来,随着超声波技术的不断进步发展,尤其是大功率超声冲击设备制造技术的日益成熟,索尼克/超音速SONIC应用高能超声波产生的冲击波进行金属板料的塑性成形与校形成为了可能。
以高频率(一般在20KHz以上)、高达数千瓦功率的超声波作为能量源,通过换能器转换为同频率的纵波机械振动能量,再通过变幅杆进行放大,高能量密度的机械能冲击波作用于金属表面,使金属板料发生弯曲变形,由此实现金属板料的喷丸成形和校形。由于其工艺过程和原理类似于传统的喷丸工艺,所以称为超声波喷丸成形与校形。
近年来,随着超声波技术的发展,尤其是大功率超声冲击设备制造技术的日益成熟,应用高能超声波产生的冲击波进行金属板料的塑性成形与校形成为了可能。高能超声波喷丸成形和校形技术其设备成本低、工件性能高、适用性广、且工艺过程环保,在美国和欧洲一些国家的航空航天部门已经得到了重要应用,但我国的研究和应用尚处于起步阶段。
超声波喷丸成形与校形技术
一、基本原理
超声波喷丸技术利用高能量密度的超声波经冲击介质(钢质撞针或者弹丸)冲击金属材料表面,在金属材料表面产生远大于材料动态屈服强度的巨大冲击力,从而引发材料表面剧烈的塑性变形。材料表面层的微观组织由于这种剧烈的塑性变形而得到大大的碎化(可达纳米级别),产生密集、均匀且稳定的位错增殖。与此同时,材料内部诱导产生了高幅的残余压应力分布,当残余压应力积累到一定程度时,板料会发生宏观的弯曲变形使其内部力系重新达到平衡,并形成新的内部应力分布。通过调整超声波喷丸的不同参数,便可以产生相应的残余应力场分布,实现板料光滑曲率的精密成形与校形。
二、技术特点
超声波喷丸成形和校形相较于其他成形与校形方法,技术优势较明显,主要体现在以下几个方面。
(1)可实现较厚板材的成形。由于其具有的高应变率效应,能够产生幅度和深度更大的残余压应力场,实现更大曲率半径的成形和校形,在厚板局部成形和校形方面具有优势。在厚度不大于22mm的铝合金板材上可以成形和校正形状,而传统机械喷丸成形则因板材太厚而不能有效成形和校形。
(2)能实现复杂形状工件的成形和校形。超声波喷丸设备结构简单、操作方便,能够对复杂的结构件 (如腔体)进行局部成形处理,设备的工艺参数少(超声波发生器的频率、 撞针规格、振幅),可控性好,对于不同变形特征的成形和校形过程选取适用的设备工艺参数,可控制金属板料表面的残余应力大小和深度,从而 达到控制金属板料表面残余应力场的分布,可实现金属板料的成形和校形。
(3)成形后的材料综合性能较其他喷丸成形方法好。与其他喷丸成形相比,超声喷丸成形后的板材表面光滑、粗糙度良好。撞针垂直方向 撞击材料表面,且速度要小于传统丸粒,撞针撞击部位的圆度和表面粗糙度精度高,而这些因素都使喷丸处理后的工件表面粗糙度值下降。除此之外,超声波喷丸进行成形的同时所产生的残余压应力是传统喷丸及激光喷丸的数倍,更大的残余压应力值提高了工件材料的、抗腐蚀及抗变形的能力。
(4)无污染。机械喷丸成形需要在每次喷丸结束后对弹丸进行收集、清洗、分级以及破粒去除,而超声波喷丸成形采用的钢质喷丸介质不容易磨损,长时间作用磨损后也很方便更换,是一项无污染绿色制造技术。
(5)设备的成本低。超声波发生器尺寸较小、能耗低,整个超声波喷丸装置可做成移动便携式,应用场所不受限制,完全可以在车间生产线 进行现场作业。
三、研究和应用进展
超声波喷丸强化、超声波喷丸成形与超声波喷丸校形统称为超声波喷丸技术,是近十几年兴起的一种表面处理技术。超声波喷丸强化技术主要是利用弹丸或撞针对金属材料表面进行高速重复冲击使其产生硬化层,以达到提高金属零件的表面强度、疲劳寿命等目的。超声波喷丸校形与成形技术则是通过撞击产生残余应力,迫使板料产生宏观弯曲变形,在材料“增寿”的同时,达到成形与校形的目的。超声波喷丸强化技术相对比较成熟,已有较广泛的应用及研究报道,而超声波喷丸成形与超声波喷丸校形研究和应用报道则比较少。
2005年,乌克兰Pmkenko等提出一种新型的超声波喷丸设备,采用撞针作为工具头,又称为超声波喷丸。他们用该设备处理大型平面,有效提高了表面硬度,材料的表面粗糙度也优于传统喷丸。
2006年,俄罗斯Statnikov等比较了在超声波喷丸中采用撞针和丸粒效果的不同。结果证明了采用撞针的超声波喷丸工艺在材料表面所产生的应力要大于普通超声波喷丸。